ClickBench (ClickHouse Analytics Benchmark)

Tags intermediate concept clickbench

Overview

ClickBench is a systematic analytics benchmark designed to test the performance of analytical database systems using real-world web analytics data patterns. Originally developed by ClickHouse, this benchmark has become a standard for evaluating OLAP database performance across different systems and architectures.

The benchmark uses a single flat table with web analytics data containing approximately 100 columns and tests 43 different query patterns that are representative of real-world analytics workloads. ClickBench is particularly valuable for testing columnar databases, OLAP engines, and systems designed for high-performance analytics.

Key Features

  • 43 analytical queries covering diverse performance patterns

  • Single flat table design - Emphasizes column store performance

  • Real-world data patterns - Based on actual web analytics data

  • Comprehensive column coverage - ~100 columns testing various data types

  • Performance-focused - Designed for precise timing comparisons

  • Cross-system compatibility - Standard benchmark across different databases

  • Scalable testing - Configurable dataset sizes for different scenarios

Schema Description

ClickBench uses a single table called HITS that represents web analytics data with systematic coverage of user interactions, browser information, geographic data, and various event attributes.

HITS Table Structure

The HITS table contains ~100 columns covering all aspects of web analytics:

Core Event Data

Column

Type

Description

WatchID

BIGINT

Unique event identifier

EventTime

TIMESTAMP

Event timestamp

EventDate

DATE

Event date

CounterID

INTEGER

Analytics counter ID

UserID

BIGINT

User identifier

User and Session Information

Column

Type

Description

UserAgent

SMALLINT

Browser user agent ID

ClientIP

INTEGER

Client IP address

RegionID

INTEGER

Geographic region ID

Age

SMALLINT

User age

Sex

SMALLINT

User gender

Income

SMALLINT

User income bracket

Browser and Device Data

Column

Type

Description

ResolutionWidth

SMALLINT

Screen resolution width

ResolutionHeight

SMALLINT

Screen resolution height

IsMobile

SMALLINT

Mobile device flag

MobilePhone

SMALLINT

Mobile phone type

MobilePhoneModel

VARCHAR(255)

Mobile phone model

JavaEnable

SMALLINT

Java enabled flag

JavascriptEnable

SMALLINT

JavaScript enabled flag

CookieEnable

SMALLINT

Cookies enabled flag

Page and Navigation Data

Column

Type

Description

URL

TEXT

Page URL

Referer

TEXT

Referrer URL

Title

TEXT

Page title

IsRefresh

SMALLINT

Page refresh flag

IsNotBounce

SMALLINT

Not a bounce flag

Search and Advertising Data

Column

Type

Description

SearchEngineID

SMALLINT

Search engine identifier

SearchPhrase

VARCHAR(1024)

Search query phrase

AdvEngineID

SMALLINT

Advertising engine ID

Technical and Performance Data

Column

Type

Description

SendTiming

INTEGER

Send timing in milliseconds

DNSTiming

INTEGER

DNS timing in milliseconds

ConnectTiming

INTEGER

Connection timing

ResponseStartTiming

INTEGER

Response start timing

ResponseEndTiming

INTEGER

Response end timing

FetchTiming

INTEGER

Fetch timing

Data Characteristics

The HITS table contains realistic web analytics distributions:

  • Temporal patterns: Realistic time-of-day and seasonal usage patterns

  • Geographic distribution: Global user base with regional concentrations

  • Device diversity: Mixed desktop, mobile, and tablet usage

  • Search patterns: Real search query distributions and patterns

  • User behavior: Realistic session lengths, bounce rates, and engagement metrics

Query Characteristics

ClickBench includes 43 queries that test different aspects of analytical performance:

Basic Aggregation Queries (Q1-Q7)

Q1: Simple Count

SELECT COUNT(*) FROM hits;
  • Purpose: Test basic table scanning performance

  • Performance focus: Sequential scan optimization

Q2: Filtered Count

SELECT COUNT(*) FROM hits WHERE AdvEngineID <> 0;
  • Purpose: Test filtering with aggregation

  • Performance focus: Predicate evaluation during scan

Q3: Multiple Aggregations

SELECT SUM(AdvEngineID), COUNT(*), AVG(ResolutionWidth) FROM hits;
  • Purpose: Test multiple aggregation functions

  • Performance focus: Aggregation pipeline efficiency

Q5: Distinct Count

SELECT COUNT(DISTINCT UserID) FROM hits;
  • Purpose: Test cardinality estimation and distinct operations

  • Performance focus: Hash table efficiency for high cardinality

Grouping and Ordering Queries (Q8-Q19)

Q8: Basic GROUP BY

SELECT AdvEngineID, COUNT(*) FROM hits 
WHERE AdvEngineID <> 0 
GROUP BY AdvEngineID 
ORDER BY COUNT(*) DESC;
  • Purpose: Test basic grouping with ordering

  • Performance focus: Hash aggregation and sorting

Q9: Distinct Users by Region

SELECT RegionID, COUNT(DISTINCT UserID) AS u FROM hits 
GROUP BY RegionID 
ORDER BY u DESC 
LIMIT 10;
  • Purpose: Test complex aggregation with TOP-N

  • Performance focus: Distinct counting within groups

Q13: Search Phrase Analysis

SELECT SearchPhrase, COUNT(*) AS c FROM hits 
WHERE SearchPhrase <> '' 
GROUP BY SearchPhrase 
ORDER BY c DESC 
LIMIT 10;
  • Purpose: Test string grouping with high cardinality

  • Performance focus: String hash performance

String Operations Queries (Q20-Q29)

Q21: String Pattern Matching

SELECT COUNT(*) FROM hits WHERE URL LIKE '%google%';
  • Purpose: Test string pattern matching performance

  • Performance focus: Text search optimization

Q22: Complex String Analysis

SELECT SearchPhrase, MIN(URL), COUNT(*) AS c FROM hits 
WHERE URL LIKE '%google%' AND SearchPhrase <> '' 
GROUP BY SearchPhrase 
ORDER BY c DESC 
LIMIT 10;
  • Purpose: Test combined string operations with grouping

  • Performance focus: String processing with aggregation

Q29: Regex Operations

SELECT REGEXP_REPLACE(Referer, '^https?://(?:www\\.)?([^/]+)/.*$', '\\1') AS k, 
       AVG(LENGTH(Referer)) AS l, 
       COUNT(*) AS c, 
       MIN(Referer) 
FROM hits 
WHERE Referer <> '' 
GROUP BY k 
HAVING COUNT(*) > 100000 
ORDER BY l DESC 
LIMIT 25;
  • Purpose: Test complex regex and string functions

  • Performance focus: Regex engine performance

Complex Analytics Queries (Q30-Q43)

Q30: Wide Aggregation

SELECT SUM(ResolutionWidth), SUM(ResolutionWidth + 1), ..., SUM(ResolutionWidth + 89) 
FROM hits;
  • Purpose: Test wide query processing (89 aggregation columns)

  • Performance focus: Expression evaluation and vectorization

Q37: Time Series Analysis

SELECT SUM(ResolutionWidth), 
       SUM(ResolutionWidth + 1), 
       SUM(ResolutionWidth + 2) 
FROM hits 
GROUP BY AdvEngineID, DATE_TRUNC('minute', EventTime) 
ORDER BY SUM(ResolutionWidth) DESC 
LIMIT 10;
  • Purpose: Test temporal grouping with expressions

  • Performance focus: Time-based aggregation optimization

Q43: Advanced-level Analytics

SELECT CounterID, 
       AVG(LENGTH(URL)) AS l, 
       COUNT(*) AS c 
FROM hits 
WHERE URL <> '' 
GROUP BY CounterID 
HAVING COUNT(*) > 100000 
ORDER BY l DESC 
LIMIT 25;
  • Purpose: Test complex analytical patterns with HAVING

  • Performance focus: Two-phase aggregation optimization

Usage Examples

Basic Benchmark Setup

from benchbox import ClickBench

# Initialize ClickBench benchmark
clickbench = ClickBench(scale_factor=1.0, output_dir="clickbench_data")

# Generate web analytics data
data_files = clickbench.generate_data()

# Get all 43 benchmark queries
queries = clickbench.get_queries()
print(f"Generated {len(queries)} ClickBench queries")

# Get specific query
count_query = clickbench.get_query("Q1")
print(count_query)

Data Generation and Loading

# Generate ClickBench data at different scales
clickbench_small = ClickBench(scale_factor=0.01, output_dir="clickbench_small")
data_files = clickbench_small.generate_data()

# Check generated data
hits_file = clickbench_small.output_dir / "hits.csv"
size_mb = hits_file.stat().st_size / (1024 * 1024)
print(f"Generated hits data: {size_mb:.2f} MB")

# Get schema information
schema = clickbench_small.get_schema()
print(f"HITS table has {len(schema[0]['columns'])} columns")

DuckDB Integration Example

import duckdb
from benchbox import ClickBench
import time

# Initialize and generate data
clickbench = ClickBench(scale_factor=0.01, output_dir="clickbench_tiny")
data_files = clickbench.generate_data()

# Create DuckDB connection and schema
conn = duckdb.connect("clickbench.duckdb")
schema_sql = clickbench.get_create_tables_sql()
conn.execute(schema_sql)

# Load hits data
hits_file = clickbench.output_dir / "hits.csv"
print(f"Loading data from {hits_file}...")

load_start = time.time()
conn.execute(f"""
    INSERT INTO hits
    SELECT * FROM read_csv('{hits_file}', 
                          header=true,
                          auto_detect=true,
                          ignore_errors=true)
""")
load_time = time.time() - load_start

row_count = conn.execute("SELECT COUNT(*) FROM hits").fetchone()[0]
print(f"Loaded {row_count:,} rows in {load_time:.2f} seconds")

# Run ClickBench query categories
query_categories = {
    'basic_agg': ['Q1', 'Q2', 'Q3', 'Q4', 'Q5'],
    'grouping': ['Q8', 'Q9', 'Q10', 'Q13', 'Q16'],
    'string_ops': ['Q21', 'Q22', 'Q25', 'Q26'],
    'complex': ['Q28', 'Q31', 'Q37', 'Q43']
}

results = {}
for category, query_ids in query_categories.items():
    print(f"\\nRunning {category} queries...")
    category_results = {}
    
    for query_id in query_ids:
        try:
            query_sql = clickbench.get_query(query_id)
            
            start_time = time.time()
            result = conn.execute(query_sql).fetchall()
            execution_time = time.time() - start_time
            
            category_results[query_id] = {
                'time': execution_time,
                'rows': len(result)
            }
            print(f"  {query_id}: {execution_time:.3f}s ({len(result)} rows)")
            
        except Exception as e:
            category_results[query_id] = {
                'error': str(e)
            }
            print(f"  {query_id}: ERROR - {str(e)[:50]}...")
    
    results[category] = category_results

conn.close()

# Print summary
total_time = sum(
    r['time'] for cat_results in results.values() 
    for r in cat_results.values() 
    if 'time' in r
)
total_queries = sum(
    1 for cat_results in results.values() 
    for r in cat_results.values() 
    if 'time' in r
)
print(f"\\nSummary: {total_queries} queries executed in {total_time:.2f}s")

Performance Analysis Framework

import time
from typing import Dict, List
from statistics import mean, median

class ClickBenchPerformanceTester:
    def __init__(self, clickbench: ClickBench, connection):
        self.clickbench = clickbench
        self.connection = connection
        
    def benchmark_query_category(self, category: str, iterations: int = 3) -> Dict:
        """Benchmark specific ClickBench query categories."""
        categories = {
            'scan': ['Q1', 'Q2', 'Q7'],
            'aggregation': ['Q3', 'Q4', 'Q5', 'Q6'],
            'grouping': ['Q8', 'Q9', 'Q10', 'Q11', 'Q12'],
            'string': ['Q13', 'Q14', 'Q21', 'Q22', 'Q23'],
            'complex': ['Q28', 'Q29', 'Q30', 'Q31'],
            'analytics': ['Q37', 'Q40', 'Q41', 'Q42', 'Q43']
        }
        
        if category not in categories:
            raise ValueError(f"Invalid category: {category}")
            
        query_ids = categories[category]
        results = {}
        
        for query_id in query_ids:
            print(f"Benchmarking {query_id} ({category})...")
            
            times = []
            for iteration in range(iterations):
                query_sql = self.clickbench.get_query(query_id)
                
                start_time = time.time()
                try:
                    result = self.connection.execute(query_sql).fetchall()
                    execution_time = time.time() - start_time
                    times.append(execution_time)
                except Exception as e:
                    print(f"  Error in iteration {iteration + 1}: {e}")
                    continue
            
            if times:
                results[query_id] = {
                    'category': category,
                    'avg_time': mean(times),
                    'median_time': median(times),
                    'min_time': min(times),
                    'max_time': max(times),
                    'rows_returned': len(result) if 'result' in locals() else 0,
                    'times': times,
                    'success_rate': len(times) / iterations
                }
                print(f"  Average: {mean(times):.3f}s, Median: {median(times):.3f}s")
            else:
                results[query_id] = {
                    'category': category,
                    'error': 'All iterations failed'
                }
        
        return results
    
    def run_complete_benchmark(self) -> Dict:
        """Run all ClickBench categories and return systematic results."""
        complete_results = {}
        
        # Test each category
        categories = ['scan', 'aggregation', 'grouping', 'string', 'complex', 'analytics']
        for category in categories:
            print(f"\\nRunning {category.upper()} queries...")
            try:
                category_results = self.benchmark_query_category(category)
                complete_results[category] = category_results
            except Exception as e:
                print(f"Error in {category} category: {e}")
                complete_results[category] = {'error': str(e)}
        
        # Calculate summary statistics
        all_times = []
        successful_queries = 0
        total_queries = 0
        
        for category_data in complete_results.values():
            if isinstance(category_data, dict) and 'error' not in category_data:
                for query_data in category_data.values():
                    total_queries += 1
                    if isinstance(query_data, dict) and 'times' in query_data:
                        all_times.extend(query_data['times'])
                        successful_queries += 1
        
        if all_times:
            complete_results['summary'] = {
                'total_queries': total_queries,
                'successful_queries': successful_queries,
                'success_rate': successful_queries / total_queries,
                'total_avg_time': mean(all_times),
                'total_median_time': median(all_times),
                'total_min_time': min(all_times),
                'total_max_time': max(all_times),
                'geomean_time': self._geometric_mean(all_times)
            }
        
        return complete_results
    
    def _geometric_mean(self, values: List[float]) -> float:
        """Calculate geometric mean of execution times."""
        if not values:
            return 0.0
        
        product = 1.0
        for value in values:
            product *= value
        
        return product ** (1.0 / len(values))
    
    def analyze_column_performance(self) -> Dict:
        """Analyze performance across different column types and operations."""
        column_tests = [
            ('integer_scan', 'SELECT COUNT(*) FROM hits WHERE RegionID > 1000'),
            ('string_scan', 'SELECT COUNT(*) FROM hits WHERE SearchPhrase LIKE \\'%google%\\''),
            ('timestamp_scan', 'SELECT COUNT(*) FROM hits WHERE EventTime > \\'2013-07-01\\''),
            ('integer_agg', 'SELECT RegionID, COUNT(*) FROM hits GROUP BY RegionID LIMIT 10'),
            ('string_agg', 'SELECT SearchPhrase, COUNT(*) FROM hits WHERE SearchPhrase <> \\'\\'GROUP BY SearchPhrase LIMIT 10'),
            ('mixed_agg', 'SELECT RegionID, SearchPhrase, COUNT(*) FROM hits WHERE SearchPhrase <> \\'\\'GROUP BY RegionID, SearchPhrase LIMIT 10')
        ]
        
        results = {}
        
        for test_name, query_sql in column_tests:
            print(f"Testing {test_name}...")
            
            times = []
            for iteration in range(3):
                try:
                    start_time = time.time()
                    result = self.connection.execute(query_sql).fetchall()
                    execution_time = time.time() - start_time
                    times.append(execution_time)
                except Exception as e:
                    print(f"  Error: {e}")
                    break
            
            if times:
                results[test_name] = {
                    'avg_time': mean(times),
                    'rows_returned': len(result) if 'result' in locals() else 0,
                    'times': times
                }
            else:
                results[test_name] = {'error': 'Failed to execute'}
        
        return results

# Usage
performance_tester = ClickBenchPerformanceTester(clickbench, conn)

# Test individual categories
scan_results = performance_tester.benchmark_query_category('scan')
grouping_results = performance_tester.benchmark_query_category('grouping')

print("\\nCategory Performance Summary:")
print(f"Scan Queries: {scan_results}")
print(f"Grouping Queries: {grouping_results}")

# Run complete benchmark
complete_results = performance_tester.run_complete_benchmark()
print(f"\\nComplete Benchmark Summary: {complete_results.get('summary', 'No summary available')}")

# Analyze column performance
column_results = performance_tester.analyze_column_performance()
print(f"\\nColumn Performance Analysis: {column_results}")

ClickHouse Native Integration

import clickhouse_connect
from benchbox import ClickBench

# Initialize ClickHouse for appropriate performance
client = clickhouse_connect.get_client(host='localhost', port=8123)
clickbench = ClickBench(scale_factor=1.0, output_dir="clickbench_data")

# Generate data
data_files = clickbench.generate_data()

# Create ClickHouse table with appropriate settings
create_table_sql = """
CREATE TABLE hits (
    WatchID UInt64,
    JavaEnable UInt8,
    Title String,
    GoodEvent UInt8,
    EventTime DateTime,
    EventDate Date,
    CounterID UInt32,
    ClientIP UInt32,
    RegionID UInt32,
    UserID UInt64,
    CounterClass UInt8,
    OS UInt8,
    UserAgent UInt8,
    URL String,
    Referer String,
    IsRefresh UInt8,
    RefererCategoryID UInt16,
    RefererRegionID UInt32,
    URLCategoryID UInt16,
    URLRegionID UInt32,
    ResolutionWidth UInt16,
    ResolutionHeight UInt16,
    ResolutionDepth UInt8,
    FlashMajor UInt8,
    FlashMinor UInt8,
    FlashMinor2 String,
    NetMajor UInt8,
    NetMinor UInt8,
    UserAgentMajor UInt16,
    UserAgentMinor String,
    CookieEnable UInt8,
    JavascriptEnable UInt8,
    IsMobile UInt8,
    MobilePhone UInt8,
    MobilePhoneModel String,
    Params String,
    IPNetworkID UInt32,
    TraficSourceID Int8,
    SearchEngineID UInt16,
    SearchPhrase String,
    AdvEngineID UInt8,
    IsArtifical UInt8,
    WindowClientWidth UInt16,
    WindowClientHeight UInt16,
    ClientTimeZone Int16,
    ClientEventTime DateTime,
    SilverlightVersion1 UInt8,
    SilverlightVersion2 UInt8,
    SilverlightVersion3 UInt32,
    SilverlightVersion4 UInt16,
    PageCharset String,
    CodeVersion UInt32,
    IsLink UInt8,
    IsDownload UInt8,
    IsNotBounce UInt8,
    FUniqID UInt64,
    OriginalURL String,
    HID UInt32,
    IsOldCounter UInt8,
    IsEvent UInt8,
    IsParameter UInt8,
    DontCountHits UInt8,
    WithHash UInt8,
    HitColor FixedString(1),
    LocalEventTime DateTime,
    Age UInt8,
    Sex UInt8,
    Income UInt8,
    Interests UInt16,
    Robotness UInt8,
    RemoteIP UInt32,
    WindowName Int32,
    OpenerName Int32,
    HistoryLength Int16,
    BrowserLanguage FixedString(2),
    BrowserCountry FixedString(2),
    SocialNetwork String,
    SocialAction String,
    HTTPError UInt8,
    SendTiming UInt32,
    DNSTiming UInt32,
    ConnectTiming UInt32,
    ResponseStartTiming UInt32,
    ResponseEndTiming UInt32,
    FetchTiming UInt32,
    SocialSourceNetworkID UInt8,
    SocialSourcePage String,
    ParamPrice Int64,
    ParamOrderID String,
    ParamCurrency FixedString(3),
    ParamCurrencyID UInt16,
    OpenstatServiceName String,
    OpenstatCampaignID String,
    OpenstatAdID String,
    OpenstatSourceID String,
    UTMSource String,
    UTMMedium String,
    UTMCampaign String,
    UTMContent String,
    UTMTerm String,
    FromTag String,
    HasGCLID UInt8,
    RefererHash UInt64,
    URLHash UInt64,
    CLID UInt32
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID);
"""

client.execute(create_table_sql)

# Load data using ClickHouse CSV import
hits_file = clickbench.output_dir / "hits.csv"
with open(hits_file, 'rb') as f:
    client.insert_file('hits', f, fmt='CSV')

# Run all 43 ClickBench queries
print("Running all 43 ClickBench queries on ClickHouse...")

query_results = {}
for i in range(1, 44):
    query_id = f"Q{i}"
    
    try:
        query_sql = clickbench.get_query(query_id)
        
        start_time = time.time()
        result = client.query(query_sql)
        execution_time = time.time() - start_time
        
        query_results[query_id] = {
            'time': execution_time,
            'rows': len(result.result_rows)
        }
        
        print(f"{query_id}: {execution_time:.3f}s ({len(result.result_rows)} rows)")
        
    except Exception as e:
        query_results[query_id] = {'error': str(e)}
        print(f"{query_id}: ERROR - {str(e)[:50]}...")

# Calculate performance statistics
successful_queries = [r for r in query_results.values() if 'time' in r]
if successful_queries:
    total_time = sum(r['time'] for r in successful_queries)
    avg_time = total_time / len(successful_queries)
    
    print(f"\\nClickBench Results Summary:")
    print(f"Successful queries: {len(successful_queries)}/43")
    print(f"Total execution time: {total_time:.2f}s")
    print(f"Average query time: {avg_time:.3f}s")

Performance Characteristics

Query Performance Patterns

Scan Queries (Q1, Q2, Q7):

  • Primary bottleneck: Sequential scan speed and basic filtering

  • Optimization targets: Column scanning, SIMD operations, predicate pushdown

  • Typical performance: Milliseconds to seconds

  • Scaling characteristics: Linear with data size

Aggregation Queries (Q3-Q6):

  • Primary bottleneck: Aggregation function computation

  • Optimization targets: Vectorized aggregation, parallel execution

  • Typical performance: Seconds for large datasets

  • Scaling characteristics: Sub-linear with good optimization

Grouping Queries (Q8-Q19):

  • Primary bottleneck: Hash table construction and group management

  • Optimization targets: Hash aggregation algorithms, memory efficiency

  • Typical performance: Seconds to tens of seconds

  • Scaling characteristics: Depends on cardinality and memory

String Operations (Q20-Q29):

  • Primary bottleneck: String processing and pattern matching

  • Optimization targets: String function optimization, regex engines

  • Typical performance: Highly variable, can be slow

  • Scaling characteristics: Often super-linear for complex operations

Complex Analytics (Q30-Q43):

  • Primary bottleneck: Multiple complex operations combined

  • Optimization targets: Query plan optimization, vectorization

  • Typical performance: Minutes for large datasets

  • Scaling characteristics: Highly dependent on optimization quality

System Optimization Opportunities

System Type

Scan Performance

Aggregation

Grouping

String Ops

Complex Analytics

Columnar

Column scanning

Vectorized ops

Column-wise hash

String columns

Vector processing

Row-based

Index usage

Row aggregation

Row-wise groups

String indexes

Traditional optimization

In-Memory

Memory bandwidth

Fast aggregation

In-memory hash

String caching

Memory-configured

GPU

Parallel scanning

GPU aggregation

GPU hash tables

Limited support

Mixed CPU/GPU

Configuration Options

Scale Factor Guidelines

Scale Factor

Rows

Data Size

Query Times

Use Case

0.001

~100K

~10 MB

Milliseconds

Development

0.01

~1M

~100 MB

Seconds

Testing

0.1

~10M

~1 GB

10s-60s

Integration

1.0

~100M

~10 GB

Minutes

Standard benchmark

10.0

~1B

~100 GB

Hours

Large-scale testing

Advanced-level Configuration

clickbench = ClickBench(
    scale_factor=1.0,
    output_dir="clickbench_data",
    # Data generation options
    date_range_days=365,     # Range of event dates
    user_count=10000000,     # Number of unique users
    enable_compression=True,  # Compress output files
    # Performance options
    partition_by_date=True,  # Partition by EventDate
    create_indices=True,     # Create performance indices
    optimize_for_analytics=True  # Analytics-configured generation
)

Best Practices

Data Generation

  1. Scale appropriately - Use realistic scale factors for your testing needs

  2. Consider compression - ClickBench data compresses well

  3. Partition strategy - Partition by date for temporal queries

  4. Index planning - Create indices on frequently filtered columns

Query Optimization

  1. Column store optimization - Leverage columnar storage for scans

  2. String optimization - Optimize string operations and pattern matching

  3. Memory management - Monitor memory usage for large aggregations

  4. Parallel execution - Use parallel query execution where available

Performance Testing

  1. Multiple iterations - Run queries multiple times for stable timings

  2. Cold vs. warm runs - Test both cold and warm query performance

  3. Resource monitoring - Monitor CPU, memory, and I/O during execution

  4. Cross-system comparison - Use ClickBench for database comparisons

Common Issues and Solutions

Performance Issues

Issue: Slow string operations

-- Solution: Create appropriate indices and use configured string functions
CREATE INDEX idx_hits_search_phrase ON hits(SearchPhrase);
CREATE INDEX idx_hits_url ON hits USING hash(URL);

-- Use database-specific string optimizations
SELECT COUNT(*) FROM hits WHERE SearchPhrase ILIKE '%google%';  -- Case-insensitive

Issue: Memory exhaustion on complex queries

-- Solution: Optimize memory usage and use incremental processing
SET max_memory_usage = 10000000000;  -- 10GB limit
SET max_bytes_before_external_group_by = 5000000000;  -- External sorting

-- Break down complex queries
SELECT * FROM (
    SELECT RegionID, COUNT(*) as cnt FROM hits GROUP BY RegionID
) WHERE cnt > 1000;

Data Loading Issues

Issue: Slow data loading

# Solution: Use configured loading strategies
clickbench = ClickBench(
    scale_factor=1.0,
    output_dir="clickbench_data",
    compression='gzip',      # Compress for faster I/O
    batch_size=100000,       # Optimize batch size
    parallel_loading=True    # Use parallel loading
)

Issue: Schema mismatches across databases

-- Solution: Use database-specific schema adaptations
-- For PostgreSQL
ALTER TABLE hits ALTER COLUMN EventTime TYPE TIMESTAMP;

-- For MySQL  
ALTER TABLE hits MODIFY COLUMN Title TEXT CHARACTER SET utf8mb4;

-- For DuckDB
ALTER TABLE hits ALTER COLUMN ResolutionWidth TYPE USMALLINT;

See Also

Understanding BenchBox

Getting Started

Platform-Specific Guides

External Resources