Modin DataFrame Platform

Tags intermediate guide modin dataframe-platform

Modin is a drop-in replacement for Pandas that enables parallel and distributed DataFrame operations. BenchBox supports benchmarking Modin using its Pandas-compatible API through the modin-df platform.

Overview

Attribute

Value

CLI Name

modin-df

Family

Pandas

Execution

Eager (parallel)

Best For

Large datasets that don’t fit in single-core Pandas

Min Version

0.32.0

Features

  • Drop-in Pandas replacement - Same API as Pandas with automatic parallelization

  • Multiple backends - Ray (default), Dask, or Unidist execution engines

  • Automatic parallelization - No code changes needed for parallel execution

  • Full TPC-H support - All 22 queries implemented via Pandas family

How Modin Works

Modin partitions DataFrames across CPU cores and executes operations in parallel:

                  ┌─────────┐
                  │  Modin  │
                  │DataFrame│
                  └────┬────┘
                       │
         ┌─────────────┼─────────────┐
         ▼             ▼             ▼
    ┌─────────┐   ┌─────────┐   ┌─────────┐
    │Partition│   │Partition│   │Partition│
    │   1     │   │   2     │   │   3     │
    └────┬────┘   └────┬────┘   └────┬────┘
         │             │             │
         ▼             ▼             ▼
    ┌─────────┐   ┌─────────┐   ┌─────────┐
    │  Core   │   │  Core   │   │  Core   │
    │   1     │   │   2     │   │   3     │
    └─────────┘   └─────────┘   └─────────┘

Installation

# Install Modin with Ray backend (recommended)
uv add benchbox --extra dataframe-modin

# Or with pip
pip install "benchbox[dataframe-modin]"

# For Dask backend
pip install "modin[dask]"

# For Unidist backend (experimental)
pip install "modin[unidist]"

Verify Installation

python -c "import modin.pandas as pd; print(f'Modin ready')"

Quick Start

# Run TPC-H on Modin DataFrame platform (uses Ray backend by default)
benchbox run --platform modin-df --benchmark tpch --scale 0.1

# Specify the Ray backend explicitly
benchbox run --platform modin-df --benchmark tpch --scale 1 \
  --platform-option engine=ray

# Use Dask backend
benchbox run --platform modin-df --benchmark tpch --scale 1 \
  --platform-option engine=dask

Configuration Options

Option

Default

Choices

Description

engine

ray

ray, dask, unidist

Execution backend

Backend Comparison

Backend

Best For

Notes

Ray (default)

Most use cases

Best single-machine performance

Dask

Distributed clusters

Integrates with existing Dask infrastructure

Unidist

MPI environments

Experimental, for HPC clusters

Scale Factor Guidelines

Modin can handle larger datasets than Pandas by utilizing multiple cores:

Scale Factor

Data Size

Memory Required

Cores Used

0.01

~10 MB

~500 MB

1-2

0.1

~100 MB

~1 GB

2-4

1.0

~1 GB

~4 GB

4-8

10.0

~10 GB

~40 GB

8-16

100.0

~100 GB

~400 GB

16-32+

Recommendation: For SF > 10 with limited memory, consider using Dask DataFrame (dask-df) for out-of-core processing.

Performance Characteristics

Strengths

  • Easy migration - Change import pandas as pd to import modin.pandas as pd

  • Automatic parallelization - Operations scale across available CPU cores

  • Memory efficiency - Partitioned execution reduces peak memory

  • Familiar API - No learning curve for Pandas users

Considerations

  • Overhead - Small datasets may be slower due to parallelization overhead

  • API coverage - Not all Pandas operations are equally optimized

  • Backend dependency - Requires Ray, Dask, or Unidist

When to Use Modin

Use Case

Recommendation

Pandas code with large data

Use modin-df

Small data (< 1GB)

Use pandas-df (less overhead)

Distributed cluster

Use dask-df

GPU available

Use cudf-df

Production analytics

Use polars-df (optimized)

Parallelization Behavior

Modin can utilize multiple CPU cores for parallel execution. The actual performance improvement depends on:

  • Operation type (some operations parallelize better than others)

  • Dataset size (larger datasets benefit more from parallelization)

  • Data distribution and partition characteristics

  • Available CPU cores and memory bandwidth

  • Backend engine (Ray, Dask, or Unidist)

Run benchmarks with your specific workloads to measure actual performance characteristics.

Query Implementation

Modin uses the same Pandas-compatible API:

# TPC-H Q1: Pricing Summary Report (Modin)
def q1_pandas_impl(ctx: DataFrameContext) -> Any:
    lineitem = ctx.get_table("lineitem")  # Modin DataFrame

    cutoff = date(1998, 12, 1) - timedelta(days=90)
    filtered = lineitem[lineitem["l_shipdate"] <= cutoff]

    filtered = filtered.copy()
    filtered["disc_price"] = filtered["l_extendedprice"] * (1 - filtered["l_discount"])
    filtered["charge"] = filtered["disc_price"] * (1 + filtered["l_tax"])

    result = (
        filtered
        .groupby(["l_returnflag", "l_linestatus"], as_index=False)
        .agg({
            "l_quantity": ["sum", "mean"],
            "l_extendedprice": ["sum", "mean"],
            "disc_price": "sum",
            "charge": "sum",
            "l_discount": "mean",
            "l_orderkey": "count"
        })
        .sort_values(["l_returnflag", "l_linestatus"])
    )

    return result

Python API

from benchbox.platforms.dataframe import ModinDataFrameAdapter

# Create adapter with Ray backend
adapter = ModinDataFrameAdapter(
    working_dir="./benchmark_data",
    engine="ray"
)

# Create context and load tables
ctx = adapter.create_context()
adapter.load_tables(ctx, data_dir="./tpch_data")

# Execute query
from benchbox.core.tpch.dataframe_queries import TPCH_DATAFRAME_QUERIES
query = TPCH_DATAFRAME_QUERIES.get_query("Q1")
result = adapter.execute_query(ctx, query)
print(result)

Troubleshooting

Ray Initialization Errors

ray.exceptions.RaySystemError: System error: ...

Solutions:

  1. Ensure Ray is properly installed: pip install ray

  2. Initialize Ray manually: ray.init()

  3. Check for port conflicts on default Ray ports

Slow Performance

If Modin is slower than expected:

  1. Check dataset size - Small datasets have parallelization overhead

  2. Check operation - Some operations fall back to Pandas

  3. Check memory - Insufficient memory causes swapping

# Check if operation fell back to Pandas
import modin.config as cfg
cfg.IsExperimental.put(False)  # Disable fallback warnings

Memory Issues

MemoryError: ...

Solutions:

  1. Reduce scale factor

  2. Use Dask backend for out-of-core: --platform-option engine=dask

  3. Increase system memory or use distributed cluster

Import Warnings

UserWarning: Modin is not using Ray...

The backend wasn’t properly initialized. Set explicitly:

import os
os.environ["MODIN_ENGINE"] = "ray"  # Before importing modin
import modin.pandas as pd

Comparison: Modin vs Other DataFrame Platforms

Aspect

Modin (modin-df)

Pandas (pandas-df)

Dask (dask-df)

API

Pandas-compatible

Native Pandas

Pandas-like

Parallelism

Automatic

None

Manual partitioning

Memory

Multi-core

Single-core

Out-of-core

Best for

Easy migration

Small data

Large/distributed