Modin DataFrame Platform¶
Modin is a drop-in replacement for Pandas that enables parallel and distributed DataFrame operations. BenchBox supports benchmarking Modin using its Pandas-compatible API through the modin-df platform.
Overview¶
Attribute |
Value |
|---|---|
CLI Name |
|
Family |
Pandas |
Execution |
Eager (parallel) |
Best For |
Large datasets that don’t fit in single-core Pandas |
Min Version |
0.32.0 |
Features¶
Drop-in Pandas replacement - Same API as Pandas with automatic parallelization
Multiple backends - Ray (default), Dask, or Unidist execution engines
Automatic parallelization - No code changes needed for parallel execution
Full TPC-H support - All 22 queries implemented via Pandas family
How Modin Works¶
Modin partitions DataFrames across CPU cores and executes operations in parallel:
┌─────────┐
│ Modin │
│DataFrame│
└────┬────┘
│
┌─────────────┼─────────────┐
▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐
│Partition│ │Partition│ │Partition│
│ 1 │ │ 2 │ │ 3 │
└────┬────┘ └────┬────┘ └────┬────┘
│ │ │
▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐
│ Core │ │ Core │ │ Core │
│ 1 │ │ 2 │ │ 3 │
└─────────┘ └─────────┘ └─────────┘
Installation¶
# Install Modin with Ray backend (recommended)
uv add benchbox --extra dataframe-modin
# Or with pip
pip install "benchbox[dataframe-modin]"
# For Dask backend
pip install "modin[dask]"
# For Unidist backend (experimental)
pip install "modin[unidist]"
Verify Installation¶
python -c "import modin.pandas as pd; print(f'Modin ready')"
Quick Start¶
# Run TPC-H on Modin DataFrame platform (uses Ray backend by default)
benchbox run --platform modin-df --benchmark tpch --scale 0.1
# Specify the Ray backend explicitly
benchbox run --platform modin-df --benchmark tpch --scale 1 \
--platform-option engine=ray
# Use Dask backend
benchbox run --platform modin-df --benchmark tpch --scale 1 \
--platform-option engine=dask
Configuration Options¶
Option |
Default |
Choices |
Description |
|---|---|---|---|
|
|
|
Execution backend |
Backend Comparison¶
Backend |
Best For |
Notes |
|---|---|---|
Ray (default) |
Most use cases |
Best single-machine performance |
Dask |
Distributed clusters |
Integrates with existing Dask infrastructure |
Unidist |
MPI environments |
Experimental, for HPC clusters |
Scale Factor Guidelines¶
Modin can handle larger datasets than Pandas by utilizing multiple cores:
Scale Factor |
Data Size |
Memory Required |
Cores Used |
|---|---|---|---|
0.01 |
~10 MB |
~500 MB |
1-2 |
0.1 |
~100 MB |
~1 GB |
2-4 |
1.0 |
~1 GB |
~4 GB |
4-8 |
10.0 |
~10 GB |
~40 GB |
8-16 |
100.0 |
~100 GB |
~400 GB |
16-32+ |
Recommendation: For SF > 10 with limited memory, consider using Dask DataFrame (dask-df) for out-of-core processing.
Performance Characteristics¶
Strengths¶
Easy migration - Change
import pandas as pdtoimport modin.pandas as pdAutomatic parallelization - Operations scale across available CPU cores
Memory efficiency - Partitioned execution reduces peak memory
Familiar API - No learning curve for Pandas users
Considerations¶
Overhead - Small datasets may be slower due to parallelization overhead
API coverage - Not all Pandas operations are equally optimized
Backend dependency - Requires Ray, Dask, or Unidist
When to Use Modin¶
Use Case |
Recommendation |
|---|---|
Pandas code with large data |
Use |
Small data (< 1GB) |
Use |
Distributed cluster |
Use |
GPU available |
Use |
Production analytics |
Use |
Parallelization Behavior¶
Modin can utilize multiple CPU cores for parallel execution. The actual performance improvement depends on:
Operation type (some operations parallelize better than others)
Dataset size (larger datasets benefit more from parallelization)
Data distribution and partition characteristics
Available CPU cores and memory bandwidth
Backend engine (Ray, Dask, or Unidist)
Run benchmarks with your specific workloads to measure actual performance characteristics.
Query Implementation¶
Modin uses the same Pandas-compatible API:
# TPC-H Q1: Pricing Summary Report (Modin)
def q1_pandas_impl(ctx: DataFrameContext) -> Any:
lineitem = ctx.get_table("lineitem") # Modin DataFrame
cutoff = date(1998, 12, 1) - timedelta(days=90)
filtered = lineitem[lineitem["l_shipdate"] <= cutoff]
filtered = filtered.copy()
filtered["disc_price"] = filtered["l_extendedprice"] * (1 - filtered["l_discount"])
filtered["charge"] = filtered["disc_price"] * (1 + filtered["l_tax"])
result = (
filtered
.groupby(["l_returnflag", "l_linestatus"], as_index=False)
.agg({
"l_quantity": ["sum", "mean"],
"l_extendedprice": ["sum", "mean"],
"disc_price": "sum",
"charge": "sum",
"l_discount": "mean",
"l_orderkey": "count"
})
.sort_values(["l_returnflag", "l_linestatus"])
)
return result
Python API¶
from benchbox.platforms.dataframe import ModinDataFrameAdapter
# Create adapter with Ray backend
adapter = ModinDataFrameAdapter(
working_dir="./benchmark_data",
engine="ray"
)
# Create context and load tables
ctx = adapter.create_context()
adapter.load_tables(ctx, data_dir="./tpch_data")
# Execute query
from benchbox.core.tpch.dataframe_queries import TPCH_DATAFRAME_QUERIES
query = TPCH_DATAFRAME_QUERIES.get_query("Q1")
result = adapter.execute_query(ctx, query)
print(result)
Troubleshooting¶
Ray Initialization Errors¶
ray.exceptions.RaySystemError: System error: ...
Solutions:
Ensure Ray is properly installed:
pip install rayInitialize Ray manually:
ray.init()Check for port conflicts on default Ray ports
Slow Performance¶
If Modin is slower than expected:
Check dataset size - Small datasets have parallelization overhead
Check operation - Some operations fall back to Pandas
Check memory - Insufficient memory causes swapping
# Check if operation fell back to Pandas
import modin.config as cfg
cfg.IsExperimental.put(False) # Disable fallback warnings
Memory Issues¶
MemoryError: ...
Solutions:
Reduce scale factor
Use Dask backend for out-of-core:
--platform-option engine=daskIncrease system memory or use distributed cluster
Import Warnings¶
UserWarning: Modin is not using Ray...
The backend wasn’t properly initialized. Set explicitly:
import os
os.environ["MODIN_ENGINE"] = "ray" # Before importing modin
import modin.pandas as pd
Comparison: Modin vs Other DataFrame Platforms¶
Aspect |
Modin ( |
Pandas ( |
Dask ( |
|---|---|---|---|
API |
Pandas-compatible |
Native Pandas |
Pandas-like |
Parallelism |
Automatic |
None |
Manual partitioning |
Memory |
Multi-core |
Single-core |
Out-of-core |
Best for |
Easy migration |
Small data |
Large/distributed |